Activation of glutamate receptors promotes a calcium-dependent and transporter-mediated release of purines in cultured avian retinal cells: possible involvement of calcium/calmodulin-dependent protein kinase II.
نویسندگان
چکیده
Calcium-dependent release of purines was previously demonstrated in cultures of chick retinal cells stimulated with high potassium concentrations but there is no evidence for an exocytotic mechanism of adenosine release from presynaptic terminals. Here we show that activation of NMDA or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate glutamate ionotropic receptors promotes a two- to three-fold increase in the release of purines from these cultures. Approximately 96% of intracellular radioactivity is found as nucleotides after incubation with [(3)H]adenosine, but more than 85% of glutamate-stimulated released material is found as inosine (60%), hypoxanthine (19.9%) and adenosine (7.8%). The release is prevented by removal of extracellular calcium, by the transporter blocker nitrobenzylthioinosine, or inhibitors of calcium/calmodulin-dependent protein kinase II (CAMK II). The uptake of [(3)H]adenosine, but not of [(3)H]GABA or [(3)H]choline, is also blocked by 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN62), N-[2-(N-(4-chlorocinnamyl)-N-methylaminomethyl)phenyl-N-[2-hydroxiethyl]-4-methoxybenzenesulfonamide (KN93) or the myristoylated autocamtide-2-related inhibitory peptide, suggesting that the enzyme modulates the nucleoside transporter. The distribution of intracellular purines was not affected by KN62. These results indicate that activation of glutamate receptors triggers the release of purines from retinal cells by a mechanism involving calcium influx, CAMK II and the nitrobenzylthioinosine-sensitive nucleoside transporter. The regulation of adenosine release by glutamate receptors and CAMK II could have important consequences in the presynaptic control of glutamate release.
منابع مشابه
Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملMechanisms underlying dedepression of synaptic NMDA receptors in the hippocampus.
N-Methyl-D-aspartate receptor (NMDAR)-mediated synaptic responses in hippocampal CA1 pyramidal cells are depressed during NMDAR-dependent long-term depression (LTD) due to mechanisms, in part, distinct from those underlying LTD of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic responses. The mechanisms underlying dedepression of synaptic NMDARs, howe...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurochemistry international
دوره 46 6 شماره
صفحات -
تاریخ انتشار 2005